29 research outputs found

    Deriving an Abstract Machine for Strong Call by Need

    Get PDF
    Strong call by need is a reduction strategy for computing strong normal forms in the lambda calculus, where terms are fully normalized inside the bodies of lambda abstractions and open terms are allowed. As typical for a call-by-need strategy, the arguments of a function call are evaluated at most once, only when they are needed. This strategy has been introduced recently by Balabonski et al., who proved it complete with respect to full beta-reduction and conservative over weak call by need. We show a novel reduction semantics and the first abstract machine for the strong call-by-need strategy. The reduction semantics incorporates syntactic distinction between strict and non-strict let constructs and is geared towards an efficient implementation. It has been defined within the framework of generalized refocusing, i.e., a generic method that allows to go from a reduction semantics instrumented with context kinds to the corresponding abstract machine; the machine is thus correct by construction. The format of the semantics that we use makes it explicit that strong call by need is an example of a hybrid strategy with an infinite number of substrategies

    An Operational Foundation for Delimited Continuations in<br><br> the<br><br><br> CPS<br><br> Hierarchy

    Full text link
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. We also present new applications of delimited continuations in the CPS hierarchy: finding list prefixes and normalization by evaluation for a hierarchical language of units and products.Comment: 39 page

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    Program Extraction from Proofs of Weak Head Normalization

    Get PDF
    We formalize two proofs of weak head normalization for the simply typed lambda-calculus in first-order minimal logic: one for normal-order reduction, and one for applicative-order reduction in the object language. Subsequently we use Kreisel's modified realizability to extract evaluation algorithms from the proofs, following Berger; the proofs are based on Tait-style reducibility predicates, and hence the extracted algorithms are instances of (weak head) normalization by evaluation, as already identified by Coquand and Dybjer

    Generalized Refocusing: From Hybrid Strategies to Abstract Machines

    Get PDF
    We present a generalization of the refocusing procedure that provides a generic method for deriving an abstract machine from a specification of a reduction semantics satisfying simple initial conditions. The proposed generalization is applicable to a class of reduction semantics encoding hybrid strategies as well as uniform strategies handled by the original refocusing method. The resulting machine is proved to correctly trace (i.e., bisimulate in smaller steps) the input reduction semantics. The procedure and the correctness proofs have been formalized in the Coq proof assistant

    An Operational Foundation for Delimited Continuations

    Get PDF
    We derive an abstract machine that corresponds to a definitional interpreter for the control operators shift and reset. Based on this abstract machine, we construct a syntactic theory of delimited continuations. Both the derivation and the construction scale to the family of control operators shift_n and reset_n. The definitional interpreter for shift_n and reset_n has n + 1 layers of continuations, the corresponding abstract machine has n + 1 layers of control stacks, and the corresponding syntactic theory has n + 1 layers of evaluation contexts.See also BRICS-RS-05-24

    Prenyl Ammonium Salts – New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model

    Get PDF
    Purpose Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. Methods AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively)were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. Results All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation—considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. Conclusion Obtained results indicate that APs have a potential as non-viral vectors for cell transfection
    corecore